Estimating time-varying directed gene regulation networks.
نویسندگان
چکیده
The problem of modeling the dynamical regulation process within a gene network has been of great interest for a long time. We propose to model this dynamical system with a large number of nonlinear ordinary differential equations (ODEs), in which the regulation function is estimated directly from data without any parametric assumption. Most current research assumes the gene regulation network is static, but in reality, the connection and regulation function of the network may change with time or environment. This change is reflected in our dynamical model by allowing the regulation function varying with the gene expression and forcing this regulation function to be zero if no regulation happens. We introduce a statistical method called functional SCAD to estimate a time-varying sparse and directed gene regulation network, and simultaneously, to provide a smooth estimation of the regulation function and identify the interval in which no regulation effect exists. The finite sample performance of the proposed method is investigated in a Monte Carlo simulation study. Our method is demonstrated by estimating a time-varying directed gene regulation network of 20 genes involved in muscle development during the embryonic stage of Drosophila melanogaster.
منابع مشابه
On Distributed Internal Model Principle for Output Regulation over Time-Varying Networks of Linear Heterogeneous Agents
We study a multi-agent output regulation problem, where not all agents have access to the exosystem’s dynamics. We propose a distributed controller that solves the problem for linear, heterogeneous, and uncertain agent dynamics as well as time-varying directed networks. The distributed controller consists of two parts: (1) an exosystem generator that creates a local copy of the exosystem dynami...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملSemi-parametric Methods for Estimating Time-varying Graph Structure
Stochastic networks are a plausible representation of the relational information among entities in dynamic systems such as living cells or social communities. While there is a rich literature in estimating a static or temporally invariant network from observation data, little has been done towards estimating time-varying networks from time series of entity attributes. In this paper, we present ...
متن کاملEstimating of Scour in Downstream of the Water Level Regulation Structures
Scour in the downstream of hydraulic structures is a phenomenon which usually occurs due to exceeding the velocity or shear stress from a critical level. In this paper by using the laboratory data by Borman- Jouline and De-Agostino research, it was tried to get more accurate equations in order to calculate the maximum depth of scour in the downstream of the water level regulation structures. Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 73 4 شماره
صفحات -
تاریخ انتشار 2017